CINYIGAL PRNNCIPEES THE QUEST FOR INSIGHT
 Seventh

 EditionPETER ATKINS LORETTA JONES

LEROY LAVERMAN

[^0]

FREQUENTLY USED TABLES AND FIGURES

Atomic and molecular properties

Atomic radii
Ionic radii
First ionization energies
Electron affinity
Electronegativity
Average bond lengths
Ground-state electron configurations
The elements (physical properties)

Thermodynamic properties

Standard enthalpies of physical change
Lattice enthalpies
Mean bond enthalpies
Vapor pressure of water
Thermodynamic data

Solutions

Acidity constants at $25^{\circ} \mathrm{C}$
Basicity constants at $25^{\circ} \mathrm{C}$
Acidity constants of polyprotic acids at $25^{\circ} \mathrm{C}$
Solubility products

Electrochemistry

Standard potentials

Fig. 1F. 4 54
Fig. 1F. $6 \quad 55$
Fig. 1F. 8 57
Fig. 1F. 12 59
Fig. 2D. 2 97
Table 2D. 3 101
Appendix 2C A18
Appendix 2D A19

Table 4C. 1 268
Table 4E. 1 291
Table 4E. 3 293
Table 5A. 2 351
Appendix 2A A9

Table 6C. 1 461
Table 6C. 2 462
Table 6E. 1 483
Table 6I.1 524

Table 6M. 1 557
Appendix 2B A16
this page left intentionally blank

CHEMICAL PRINCIPLES

THE QUEST FOR INSIGHT

PETER ATKINS
Oxford University

LORETTA JONES
University of Northern Colorado

LEROY LAVERMAN

University of California, Santa Barbara
w.h. freeman

Macmillan Learning
New York

Publisher: Kate Ahr Parker
Acquisitions Editor: Alicia Brady
Developmental Editor: Heidi Bamatter
Marketing Manager: Maureen Rachford
Marketing Assistant: Cate McCaffery
Media Editor: Amy Thorne
Media Producer: Jenny Chiu
Photo Editor: Robin Fadool
Photo Licensing Editor: Richard Fox
Senior Project Editor: Elizabeth Geller
Cover Designer: Blake Logan
International Edition Cover Design: Dirk Kaufman
Text Designer: Marsha Cohen
Art Manager: Matthew McAdams
Illustrations: Peter Atkins and Leroy Laverman
Production Manager: Susan Wein

Composition: Aptara

Printing and Binding: RR Donnelley
Cover Image: © Ted Kinsman/Alamy

Library of Congress Control Number: 2015951706
ISBN-13: 978-1-4641-8395-9
ISBN-10: 1-4641-8395-3
© 2016, 2013, 2010, 2005 by P. W. Atkins, L. L. Jones, and L. E. Laverman

All rights reserved

Printed in the United States of America
First printing

[^1]
FUNDAMENTALS

Focus 1 ATOMS 1
Focus 2 MOLECULES 67
Focus 3 STATES OF MATTER 145
INTERLUDE Ceramics and Glasses 239
Focus 4 THERMODYNAMICS 241
INTERLUDE Free Energy and Life 346
Focus 5 EQUILIBRIUM 347
INTERLUDE Homeostasis 442
Focus 6 REACTIONS 443
INTERLUDE Practical Cells 584
Focus 7 KINETICS 587
Focus 8 THE MAIN-GROUP ELEMENTS 643
Focus 9 THE d-BLOCK ELEMENTS 705
Focus 10 NUCLEAR CHEMISTRY 747
Focus 11 ORGANIC CHEMISTRY 777
INTERLUDE Technology: Fuels 829
MAJOR TECHNIQUES (Online Only)
http://macmillanhighered.com/chemicalprinciples7e
this page left intentionally blank
PrefaceXV
FUNDAMENTALS / F1
Introduction and Orientation F1
A Matter and Energy F5
A. 1 Symbols and Units / F5
A. 2 Accuracy and Precision / F8
A. 3 Force / / F9
A. 4 Energy / F10
fundamentals a Exercises / F13
B Elements and Atoms F15
B. 1 Atoms / F15
B. 2 The Nuclear Model / F16
B. 3 Isotopes / F18
B. 4 The Organization of the Elements / F19FUNDAMENTALS B Exercises / F21
C Compounds F22
C. 1 What Are Compounds? / F22
C. 2 Molecules and Molecular Compounds / F23
C. 3 Ions and lonic Compounds / F24 FUNDAMENTALS C Exercises / F28
D NomenclatureF29
D. 1 Names of Cations F29
D. 2 Names of Anions / F29
D. 3 Names of lonic Compounds / F31toolbox D. 1 How to Name IonicCompounds / F31
D. 4 Names of Inorganic Molecular Compounds / F32
toolbox D. 2 How to Name Simple Inorganic Molecular Compounds / F33
D. 5 The Nomenclature of Some Common Organic Compounds / F35 FUNDAMENTALS D Exercises / F37
E Moles and Molar Masses F38
E. 1 The Mole / F38
E. 2 Molar Mass / F40

F The Determination of Composition
F. 1 Mass Percentage Composition / F46
F. 2 Determining Empirical Formulas F48
F. 3 Determining Molecular Formulas F49
FUNDAMENTALS F Exercises / F50
G Mixtures and Solutions F51
G. 1 Classifying Mixtures / F5
G. 2 Separation Techniques / F53
G. 3 Concentration / F54
G. 4 Dilution / F56
toolbox G. 1 How to Calculate theVolume of Stock Solution Required fora Given Dilution / F57
FUNDAMENTALS G Exercises / F58
H Chemical Equations F60
H. 1 Representing Chemical Reactions / F60
H. 2 Balanced Chemical Equations / F62FUNDAMENTALS H Exercises / F64
I Precipitation Reactions F66
I. 1 Electrolytes / F66
I. 2 Precipitates / F67
I. 3 Ionic and Net Ionic Equations / F68
I. 4 Putting Precipitation to Work / F69
FUNDAMENTALS I Exercises / F71
J Acids and Bases F72
J. 1 Acids and Bases in Aqueous Solution / / F73
J. 2 Strong and Weak Acids and Bases F74
J. 3 Neutralization / / F76
fundamentals J Exercises / F77
K Redox ReactionsF78
K. 1 Oxidation and Reduction / F78
K. 2 Oxidation Numbers / F80tOOLBOX K. 1 How to Assign OxidationNumbers / F80
K. 3 Oxidizing and Reducing Agents / F82
K. 4 Balancing Simple RedoxEquations / F84
FUNDAMENTALS K Exercises / F85
L Reaction Stoichiometry F87
L. 1 Mole-to-Mole Predictions / F87
L. 2 Mass-to-Mass Predictions / F88
toolbox L. 1 How to Carry Out Mass-toMass Calculations / F88
L. 3 Volumetric Analysis / F90toolbox L. 2 How to Interpret aTitration / F91
FUNDAMENTALS L Exercises / F94
M Limiting Reactants F96
M. 1 Reaction Yield / F96
M. 2 The Limits of Reaction / F98
TOOLBOX M. 1 How to Identify the Limiting Reactant / F98
M. 3 Combustion Analysis / F101
FUNDAMENTALS M Exercises / F104
FOCUS 1
ATOMS / 1
Topic 1A Investigating Atoms 2
1A. 1 The Nuclear Model of the Atom / / 2
1A. 2 Electromagnetic Radiation / 4
1A. 3 Atomic Spectra / 6TOPIC 1A Exercises / 9
Topic 1B Quantum Theory 11
1B. 1 Radiation, Quanta, and Photons / 11
1B. 2 The Wave-Particle Duality of Matter / 17
1B. 3 The Uncertainty Principle / 19
TOPIC 1B Exercises / 21
Topic 1C Wavefunctions and Energy Levels 23
1C. 1 The Wavefunction and Its Interpretation / 23 / 23
1C. 2 The Quantization of Energy / 2
BOX 1C. 1 Nanocrystals / 26
TOPIC 1C Exercises / 28
Topic 1D The Hydrogen Atom 30
1D. 1 Energy Levels / 30
1D. 2 Atomic Orbitals / 31
1D. 3 Quantum Numbers, Shells, and Subshells / 33
1D. 4 The Shapes of Orbitals / 35
1D. 5 Electron Spin / 38Box 1D. 1 How Do We Know . . .That an Electron Has Spin? / 39

1D. 6 The Electronic Structure of Hydrogen / 39
TOPIC 1D Exercises / 40
Topic 1E Many-Electron Atoms 42
1E. 1 Orbital Energies / 42
1E. 2 The Building-Up Principle / 44
tOOLBOX 1E. 1 How to Predict theGround-State Electron Configurationof an Atom / 47TOPIC 1E Exercises / 49
Topic 1F Periodicity 51
1F. 1 The General Structure of the Periodic Table / 51
1F. 2 Atomic Radius / 53
1F. 3 Ionic Radius / 54
1F. 4 Ionization Energy 56
1F. 5 Electron Affinity 58
1F.6 The Inert-Pair Effect / 60
1F. 7 Diagonal Relationships / 60
1F. 8 The General Properties of theElements / 60
TOPIC 1F Exercises / 63
FOCUS 1 Online Cumulative Example / 64
FOCUS 1 Exercises / 64
FOCUS 2
MOLECULES / 67
Topic 2A Ionic Bonding 68
2A. 1 The lons That Elements Form / / 68
2A. 2 Lewis Symbols / 70
2A. 3 The Energetics of Ionic Bond Formation / 72A. 4 Interactions Between lons / 72TOPIC 2A Exercises / 75
Topic 2B Covalent Bonding 77
2B. 1 Lewis Structures / 77
tOOLBOX 2B. 1 How to Write theLewis Structure of a PolyatomicSpecies / 79
2B. 2 Resonance / 81
2B. 3 Formal Charge / 84
toolbox 2B. 2 How to Use FormalCharge to Identify the Most LikelyLewis Structure / 85
Topic 2C Beyond the Octet Rule 88
2C. 1 Radicals and Biradicals / 88
BOX 2C. 1 What Has This to Do With . . . Staying Alive? Chemical Self-Preservation / 89
2C. 2 Expanded Valence Shells / 89
2C. 3 Incomplete Octets / 92
TOPIC 2C Exercises / 93
Topic 2D The Properties of Bonds 95
2D. 1 Correcting the Covalent Model: Electronegativity / 95
2D. 2 Correcting the lonic Model: Polarizability / 97
2D. 3 Bond Strengths / / 98
2D. 4 Bond Lengths / 100TOPIC 2D Exercises / 102
Topic 2E The VSEPR Model 103
2E. 1 The Basic VSEPR Model / 103
box 2E. 1 Frontiers of Chemistry: Drugs by Design and Discovery / 104
2E. 2 Molecules with Lone Pairs on theCentral Atom / 107toolbox 2E. 1 How to Use theVSEPR Model / 110
2E. 3 Polar Molecules / 112
TOPIC 2E Exercises / 115
Topic 2F Valence-Bond Theory 117
2F.1 Sigma and Pi Bonds / 117
2F. 2 Electron Promotion and the Hybridization of Orbitals 119
2F.3 Other Common Types of Hybridization / 120
2F.4 Characteristics of Multiple Bonds / 123
TOPIC 2F Exercises 126
Topic 2G Molecular Orbital Theory 127
2G. 1 Molecular Orbitals 127
2G.2 Electron Configurations of Diatomic Molecules 128
box 2 G. 1 How Do We Know .The Energies of Molecular Orbitals? / 130
toolbox 2G. 1 How to Determinethe Electron Configuration andBond Order of a HomonuclearDiatomic Species / 131
box 2G. 2 How Do We Know . . . That Electrons Are Not Paired? / 133
2G.3 Bonding in Heteronuclear Diatomic Molecules / 134
2G. 4 Orbitals in Polyatomic Molecules / 135 tOPIC 2G Exercises / 137
FOCUS 2 Online Cumulative Example / 139
FOCUS 2 Exercises 139
STATES OF MATTER / 145
Topic 3A The Nature of Gases 147
3A. 1 Observing Gases / 147
3A. 2 Pressure / 148
3A. 3 Alternative Units of Pressure / 150
TOPIC 3A Exercises / 151
Topic 3B The Gas Laws 153
3B. 1 The Experimental Observations / 153
3B. 2 Applications of the Ideal Gas Law / 156
3B. 3 Molar Volume and Gas Density / 159
TOPIC 3B Exercises / 161
Topic 3C Gases in Mixtures and Reactions 163
3C. 1 Mixtures of Gases / 163
3C. 2 The Stoichiometry of ReactingGases / 166TOPIC 3 C Exercises / 168
Topic 3D Molecular Motion 170
3D. 1 Diffusion and Effusion 170
3D. 2 The Kinetic Model of Gases / 171
3D. 3 The Maxwell Distribution of Speeds 175
box 3D. 1 How Do We Know TheDistribution of Molecular Speeds? / 176TOPIC 3D Exercises / 177
Topic 3E Real Gases 179
3E. 1 Deviations from Ideality / 179
3E. 2 Equations of State of Real Gases / 180
3E. 3 The Liquefaction of Gases / / 182
tOPIC 3 E Exercises 183
Topic 3F Intermolecular Forces 185
3F. 1 The Origin of Intermolecular Forces / 185
3F. 2 Ion-Dipole Forces / 186
3F. 3 Dipole-Dipole Forces / 187
3F. 4 London Forces 189
3F. 5 Hydrogen Bonding / 191
3F. 6 Repulsions 192
TOPIC 3F Exercises / 193
Topic 3G Liquids 195
3G. 1 Order in Liquids 195
3G. 2 Viscosity and Surface Tension / 195
3G. 3 Liquid Crystals / 197
3G. 4 Ionic Liquids / / 198
TOPIC 3G Exercises / 199
Topic 3H Solids 201
3H. 1 Classification of Solids / 201
box 3н. 1 How Do We Know . What a Surface Looks Like? / 202
3H. 2 Molecular Solids / 204
3H. 3 Network Solids / 204
3H. 4 Metallic Solids / 206
3H. 5 Unit Cells / 209
3H. 6 Ionic Solids / / 212
topic 3H Exercises / 215
Topic 3I Inorganic Materials 218
31.1 Alloys / 21
31.2 Silicates 220
31.3 Calcium Carbonate / 221
31.4 Cement and Concrete / 222
TOPIC 3I Exercises / 223
Topic 3J Materials for New Technologies 224
3J. 1 Electrical Conduction in Solids / / 224
3J. 2 Semiconductors 225
3J. 3 Superconductors / 227
3J. 4 Luminescent Materials / 228
3J. 5 Magnetic Materials 229
3J. 6 Nanomaterials / 229
3J. 7 Nanotubes / 230
TOPIC 3J Exercises / 231
FOCUS 3 Online Cumulative Example 233
FOCUS 3 Exercises / 233
INTERLUDE Ceramics and Glasses / 239
THERMODYNAMICS / 241
Topic 4A Work and Heat 243
4A. 1 Systems and Surroundings / 24 243
4A. 2 Work / / 244
4A. 3 Expansion Work 245
4A. 4 Heat / 250
4A. 5 The Measurement of Heat / 250Topic 4B Internal Energy256
4B. 1 The First Law 256
4B. 2 State Functions / 257
4B. 3 A Molecular Interlude / 260tOPIC 4B Exercises / 262
Topic 4C Enthalpy 263
4C. 1 Heat Transfers at Constant Pressure / 263
4C. 2 Heat Capacities at Constant Volume and Constant Pressure / 264
4C. 3 The Molecular Origin of the Heat Capacities of Gases / 265
4C. 4 The Enthalpy of Physical Change / / 267
4C. 5 Heating Curves / 269
box 4c. 1 How Do We KnowThe Shape of a Heating Curve? / 270Topic 4D Thermochemistry273
4D. 1 Reaction Enthalpy / 273
4D. 2 The Relation Between ΔH and $\Delta U / 274$
4D. 3 Standard Reaction Enthalpies / / 276
BOX 4D. 1 What Has This to Do With . .The Environment? Alternative Fuels / 277
4D. 4 Combining Reaction Enthalpies:
Hess's Law / 280
toolbox 4D. 1 How to Use Hess's
Law / 280
4D. 5 Standard Enthalpies of Formation / 282
4D. 6 The Variation of Reaction Enthalpy withTemperature / 285TOPIC 4D Exercises / 287
Topic 4E Contributions to Enthalpy 290
4E. 1 Ion Formation 290
4E. 2 The Born-Haber Cycle / 290
4E. 3 Bond Enthalpies / 292TOPIC 4E Exercises / 295
Topic 4F Entropy 296
4F. 1 Spontaneous Change / 296
4F. 2 Entropy and Disorder / 296
4F. 3 Entropy and Volume / 298
4F.4 Entropy and Temperature / 300
4F. 5 Entropy and Physical State / / 303
tOPIC 4F Exercises / 306
Topic 4G The Molecular Interpretation of Entropy 308
4G. 1 The Boltzmann Formula / / 308
4G. 2 The Equivalence of Statistical and Thermodynamic Entropies / 311 topic 4G Exercises / 313
Topic 4H Absolute Entropies 314
4H. 1 Standard Molar Entropies 314
BOX 4H. 1 Frontiers of Chemistry: The Quest for Absolute Zero / 315
4H. 2 Standard Reaction Entropies / 318
TOPIC 4H Exercises 319
Topic 41 Global Changes in Entropy 321
41.1 The Surroundings / 321
41.2 The Overall Change in Entropy / 323 323
41.3 Equilibrium / / 326TOPIC 4I Exercises / 328
Topic 4J Gibbs Free Energy 329
4J. 1 Focusing on the System 329
4J. 2 Gibbs Free Energy of Reaction / / 332
4J. 3 The Gibbs Free Energy and Nonexpansion Work / 335
4J. 4 The Effect of Temperature / 337
tOPIC 4J Exercises / 339
FOCUS 4 Online Cumulative Example / 341
FOCUS 4 Exercises / 341
INTERLUDE Free Energy and Life / 346
FOCUS 5
EQUILIBRIUM / 347
Topic 5A Vapor Pressure349
5A. 1 The Origin of Vapor Pressure / 349

5A. 2 Volatility and Intermolecular Forces / 350
5A. 3 The Variation of Vapor Pressure with Temperature / 351
5A. 4 Boiling / 354
TOPIC 5A Exercises / 355
Topic 5B Phase Equilibria in One-Component Systems 357
5B. 1 One-Component Phase Diagrams / 357

5B. 2 Critical Properties / 360TOPIC 5B Exercises / 362
Topic 5C Phase Equilibria in Two-Component Systems 364
5C. 1 The Vapor Pressure of Mixtures / 364
5C. 2 Binary Liquid Mixtures / 366
5C. 3 Distillation / 369
5C. 4 Azeotropes / 369
TOPIC 5C Exercises / 371
Topic 5D Solubility 373
5D. 1 The Limits of Solubility / 373
5D. 2 The Like-Dissolves-Like Rule / / 374
5D. 3 Pressure and Gas Solubility / 376
5D. 4 Temperature and Solubility / 377
5D. 5 The Thermodynamics of Dissolving 377
5D. 6 Colloids / 380
TOPIC 5D Exercises / 3 381
Topic 5E Molality 383toolbox 5E. 1 How to Use theMolality / 384TOPIC 5E Exercises / 387
Topic 5F Colligative Properties 388
5F. 1 Boiling-Point Elevation and Freezing- Point Depression / 388
5F. 2 Osmosis / 390BOX 5.1 Frontiers of Chemistry:Drug Delivery / 391
tOOLBOX 5F. 1 How to Use ColligativeProperties to Determine Molar Mass / 393TOPIC 5F Exercises / 396
Topic 5G Chemical Equilibrium 397
5G.1 The Reversibility of Reactions / 397
5G.2 Equilibrium and the Law of MassAction / 399
5G. 3 The Origin of Equilibrium Constants / 402
5G.4 The Thermodynamic Description ofEquilibrium / 403
TOPIC 5G Exercises / 407
Topic 5H Alternative Forms of the Equilibrium Constant 410
5H. 1 Multiples of the Chemical Equation / 410
5H. 2 Composite Equations / / 411
5H. 3 Molar Concentrations of Gases / 411
TOPIC 5H Exercises 414
Topic 5I Equilibrium Calculations 415
51.1 The Extent of Reaction 415
51.2 The Direction of Reaction / 416
51.3 Calculations with Equilibrium Constants / 418toolbox 5 I. 1 How to Set Up and Usean Equilibrium Table / 418
TOPIC 5 I Exercises / 423
Topic 5J The Response of Equilibria to Changes in Conditions 426
5J. 1 Adding and Removing Reagents / / 426
5J. 2 Compressing a Reaction Mixture / / 429
5J. 3 Temperature and Equilibrium / 431
TOPIC 5J Exercises / 434
FOCUS 5 Online Cumulative Example / 436
FOCUS 5 Exercises / 436
INTERLUDE Homeostasis / 442
FOCUS 6
REACTIONS / 443
Topic 6A The Nature of Acids and Bases 445
6A. 1 Brønsted-Lowry Acids and Bases / 445
6A. 2 Lewis Acids and Bases / / 448
6A. 3 Acidic, Basic, and Amphoteric Oxides / / 449
6A. 4 Proton Exchange Between Water Molecules / 450
TOPIC 6A Exercises / 453
Topic 6B The pH Scale 455
6B. 1 The Interpretation of pH / 455
6B. 2 The pOH of Solutions 457
Topic 6C Weak Acids and Bases 460
6C. 1 Acidity and Basicity Constants / / 460
6C. 2 The Conjugate Seesaw / 463
6C. 3 Molecular Structure and AcidStrength / 465
6C. 4 The Strengths of Oxoacids and Carboxylic Acids / 467topic 6C Exercises / 470
Topic 6D The pH of Aqueous Solutions 472
6D. 1 Solutions of Weak Acids 472
tOOLBOX 6D. 1 How to Calculate thepH of a Solution of a Weak Acid / 473
6D. 2 Solutions of Weak Bases / 475
toolbox 6D. 2 How to Calculate thepH of a Solution of a Weak Base / 475
6D. 3 The pH of Salt Solutions 477
TOPIC 6D Exercises 482
Topic 6E Polyprotic Acids and Bases 483
6E. 1 The pH of a Polyprotic Acid Solution / 483
6E. 2 Solutions of Salts of Polyprotic Acids / 484
6E. 3 The Concentrations of SoluteSpecies / 486
tOOLbOX 6 . 1 How to Calculate theConcentrations of All Species in aPolyprotic Acid Solution / 486
6E. 4 Composition and pH / 489
box 6e. 1 What Has This to Do With .The Environment? Acid Rain and theGene Pool / 490TOPIC $6 E$ Exercises / 493
Topic 6F Autoprotolysis and pH 494
6F. 1 Very Dilute Solutions of StrongAcids and Bases / 494
6F. 2 Very Dilute Solutions of WeakAcids / 496TOPIC 6F Exercises / 498
Topic 6G Buffers 499
6G. 1 Buffer Action / 499
6G. 2 Designing a Buffer / 500
6G. 3 Buffer Capacity / / 505
BOX 6G. 1 What Has This to Do WithStaying Alive? Physiological Buffers / 506
topic 6G Exercises / 507
Topic 6H Acid-Base Titrations 509
6H. 1 Strong Acid-Strong Base Titrations / 509
toolbox 6H. 1 How to Calculate thepH During a Strong Acid-Strong BaseTitration / 510
6H. 2 Strong Acid-Weak Base and Weak Acid-Strong Base Titrations / 511
tOOLbOX 6H. 2 How to Calculate the pH During a Titration of a Weak Acid or a Weak Base / 514
6H. 3 Acid-Base Indicators / 516
6H. 4 Polyprotic Acid Titrations / 518TOPIC 6H Exercises / 520
Topic 61 Solubility Equilibria 523
61.1 The Solubility Product / 523
61.2 The Common-lon Effect / 525
61.3 Complex Ion Formation / / 527
topic ol Exercises / 528
Topic 6J Precipitation 530
6J. 1 Predicting Precipitation / 530
6J. 2 Selective Precipitation / / 531
6J. 3 Dissolving Precipitates / / 533
6J. 4 Qualitative Analysis / / 533
TOPIC 6J Exercises / 535
Topic 6K Representing Redox Reactions537
6K. 1 Half-Reactions / 537
6K. 2 Balancing Redox Equations / 538toolbox 6K. 1 How to BalanceComplicated Redox Equations / 538
topic 6 K Exercises / 543
Topic 6L Galvanic Cells 545
6L. 1 The Structure of Galvanic Cells / / 545
6L. 2 Cell Potential and Reaction Gibbs Free Energy / 546
6L. 3 The Notation for Cells / / 549toolbox 6L. 1 How to Write a CellReaction Corresponding to a CellDiagram / 551
TOPIC 6L Exercises / 553
Topic 6M Standard Potentials 554
6M. 1 The Definition of Standard Potential 554
6M. 2 The Electrochemical Series / 559
Topic 6N Applications of Standard Potentials 5616N. 1 Standard Potentials and EquilibriumConstants / 561toolbox 6N. 1 How to CalculateEquilibrium Constants fromElectrochemical Data / 562
6N. 2 The Nernst Equation / 563
6N. 3 Ion-Selective Electrodes 566
6N. 4 Corrosion / / 567topic 6N Exercises / 569
Topic 60 Electrolysis 571
60.1 Electrolytic Cells / / 571
60.2 The Products of Electrolysis / / 573
toolbox 60.1 How to Predict theResult of Electrolysis / 574
60.3 Applications of Electrolysis / 576TOPIC 60 Exercises /577
FOCUS 6 Online Cumulative Example / 578
FOCUS 6 Exercises 578
INTERLUDE Practical Cells 584
KINETICS / 587
Topic 7A Reaction Rates 588
7A. 1 Concentration and Reaction Rate / 588
Box 7A. 1 How Do We Know .What Happens to Atoms During aReaction? / 591
7A. 2 The Instantaneous Rate of Reaction / 591
7A. 3 Rate Laws and Reaction Order / 592
TOPIC 7A Exercises 598
Topic 7B Integrated Rate Laws 600
7B. 1 First-Order Integrated Rate Laws / 600
7B. 2 Half-Lives for First-Order Reactions / 604
7B. 3 Second-Order Integrated RateLaws / 606
TOPIC 7B Exercises / 609
Topic 7C Reaction Mechanisms 611
7C. 1 Elementary Reactions / / 611
7C. 2 The Rate Laws of Elementary Reactions / 612
7C. 3 Combining Elementary Rate Laws / 613
7C. 4 Rates and Equilibrium / 617
7C. 5 Chain Reactions / 618
TOPIC 7C Exercises / 619
Topic 7D Models of Reactions 621
7D. 1 The Effect of Temperature 621
7D. 2 Collision Theory / 624BOX 7D. 1 How Do You Know . . .What Happens During a MolecularCollision? / 627
7D. 3 Transition State Theory / 628TOPIC 7D Exercises / 630
Topic 7E Catalysis 631
7E. 1 How Catalysts Work / 631BOX 7E. 1 What Has This to Do WithThe Environment? Protecting theOzone Layer / 632
7E. 2 Industrial Catalysts / 63 635
7E. 3 Living Catalysts: Enzymes / 635
TOPIC 7E Exercises / 637
FOCUS 7 Online Cumulative Example / 639
FOCUS 7 Exercises / 639
FOCUS 8
THE MAIN-GROUP ELEMENTS / 643
Topic 8A Periodic Trends 644
8A. 1 Atomic Properties / 644
8A. 2 Bonding Trends / / 645
8A. 3 Trends Exhibited by Hydrides and Oxides / 646
TOPIC 8A Exercises / 648
Topic 8B Hydrogen 649
8B. 1 The Element / 649
BOX 8B. 1 What Has This to Do WithThe Environment? The GreenhouseEffect / 650
8B. 2 Compounds of Hydrogen / / 652
TOPIC 8B Exercises / 653
Topic 8C Group 1: The Alkali Metals 654
8C. 1 The Group 1 Elements / 654
8C. 2 Compounds of Lithium, Sodium, and Potassium / 656
Topic 8D Group 2: The Alkaline Earth Metals 659
8D. 1 The Group 2 Elements / / 6598D. 2 Compounds of Beryllium,Magnesium, and Calcium / 661TOPIC 8D Exercises / 663
Topic 8E Group 13: The Boron Family 664
8E. 1 The Group 13 Elements / 664
8E. 2 Group 13 Oxides, Halides, and Nitrides / 666
8E. 3 Boranes, Borohydrides, and Borides / 668 TOPIC 8E Exercises / 669
Topic 8F Group 14: The Carbon Family 670
8F. 1 The Group 14 Elements / 670
BOX 8F. 1 Frontiers of Chemistry:Self-Assembling Materials / 673
8F. 2 Oxides of Carbon and Silicon / 674
8F. 3 Other Important Group 14Compounds / 675TOPIC 8F Exercises / 676
Topic 8G Group 15: The Nitrogen Family 677
8G. 1 The Group 15 Elements / 677
8G. 2 Compounds with Hydrogen and the Halogens / 679
8G. 3 Nitrogen Oxides and Oxoacids / 6818G.4 Phosphorus Oxides and Oxoacids / 682TOPIC 8G Exercises / 684
Topic 8H Group 16: The Oxygen Family 685
8H. 1 The Group 16 Elements / / 685
8H. 2 Compounds with Hydrogen / / 688
8H. 3 Sulfur Oxides and Oxoacids / / 690
TOPIC 8H Exercises / 692
Topic 8I Group 17: The Halogens 693
81.1 The Group 17 Elements / 693
81.2 Compounds of the Halogens / 695
TOPIC 8I Exercises / 697
Topic 8J Group 18: The Noble Gases 699
8J. 1 The Group 18 Elements / 699
8J. 2 Compounds of the Noble Gases / 700
TOPIC 8J Exercises / 701
FOCUS 8 Online Cumulative Example / 702

THE d-BLOCK ELEMENTS / 705
 Topic 9A Periodic Trends of the d-Block Elements
 706

9A. 1 Trends in Physical Properties / 706
9A. 2 Trends in Chemical Properties / 708TOPIC 9A Exercises / 710
Topic 9B Selected d-Block Elements: A Survey 711
9B. 1 Scandium Through Nickel/ 711
9B. 2 Groups 11 and 12 / 716TOPIC 9B Exercises / 718
Topic 9C Coordination Compounds 720
9C. 1 Coordination Complexes / 720
BOX 9c. 1 What Has This to Do WithStaying Alive? Why We Need to Eatd-Metals / 721toolbox 9c. 1 How to Name d-MetalComplexes and CoordinationCompounds / 723
9C. 2 The Shapes of Complexes / 725
9C. 3 Isomers 726
box 9 c. 2 How Do We Know...That aSubstance Is Optically Active? / 729
TOPIC 9C Exercises / 731
Topic 9D The Electronic Structure of d-Metal Complexes 733
9D. 1 Crystal Field Theory 733
9D. 2 The Spectrochemical Series / 735
9D. 3 The Colors of Complexes / 737
9D. 4 Magnetic Properties of Complexes / 739
9D. 5 Ligand Field Theory / 741
TOPIC 9D Exercises / 742
FOCUS 9 Online Cumulative Example / 74
FOCUS 9 Exercises / 744
NUCLEAR CHEMISTRY / 747
Topic 10A Nuclear Decay 748
10A. 1 The Evidence for Spontaneous Nuclear Decay / 748
10A. 2 Nuclear Reactions / 750

10A. 3 The Pattern of Nuclear Stability / 753
10A. 4 Predicting the Type of Nuclear Decay / 754
10A. 5 Nucleosynthesis / 755
box 10A. 1 What Has This to Do With...Staying Alive? Nuclear Medicine / 756
TOPIC 10A Exercises / 758
Topic 10B Radioactivity 760
10B. 1 The Biological Effects of Radiation / 760
10B. 2 Measuring the Rate of Nuclear Decay / 761
box 108. 1 How Do We Know... How Radioactive a Material Is? / 762
10B. 3 Uses of Radioisotopes / 765 TOPIC 10B Exercises / 766

Topic 10C Nuclear Energy 768
10C. 1 Mass-Energy Conversion / 768
10C. 2 The Extraction of Nuclear Energy / 770
10C. 3 The Chemistry of Nuclear Power / 772 TOPIC 10C Exercises / 773
FOCUS 10 Online Cumulative Example / 775
FOCUS 10 Exercises / 775
FOCUS 11
ORGANIC CHEMISTRY / 777
$\begin{array}{lll}\text { Topic 11A } & \text { Structures of Aliphatic } \\ & \text { Hydrocarbons } & 778\end{array}$
11A. 1 Types of Aliphatic Hydrocarbons / 778 toolbox 11A. 1 How to Name Aliphatic Hydrocarbons / 780
11A. 2 Isomers / 783
11A. 3 Physical Properties of Alkanes and Alkenes / 786
TOPIC 11A Exercises / 787
Topic 11B Reactions of Aliphatic Hydrocarbons
11B. 1 Alkane Substitution Reactions / 789
11B. 2 Synthesis of Alkenes and Alkynes / 789
11B. 3 Electrophilic Addition / 790 TOPIC 11B Exercises / 792
Topic 11C Aromatic Compounds793
11C. 1 Nomenclature / 793
11C. 2 Electrophilic Substitution / / 794
TOPIC 11C Exercises / 797
Topic 11D Common Functional Groups 798
11D. 1 Haloalkanes / 798
11D. 2 Alcohols 1799
11D. 3 Ethers / 800
11D. 4 Phenols / 800
11D. 5 Aldehydes and Ketones 801
11D. 6 Carboxylic Acids / / 802
11D. 7 Esters / 802
11D. 8 Amines, Amino Acids, and Amides / 803toolbox 11D. 1 How to NameSimple Compounds with FunctionalGroups / 805
TOPIC 11D Exercises / 806
Topic 11E Polymers and Biological Macromolecules 808
11E. 1 Addition Polymerization / 8 808
11E. 2 Condensation Polymerization / 810
11E.3 Copolymers and Composite Materials / 812
11E. 4 Physical Properties of Polymers / 813BOX 11E. 1 Frontiers of Chemistry:Conducting Polymers / 815
11E. 5 Proteins / 817
11E.6 Carbohydrates / 819
11E. 7 Nucleic Acids / 820
TOPIC 11E Exercises / 822
FOCUS 11 Online Cumulative Example / 824
FOCUS 11 Exercises / 824
INTERLUDE Technology: Fuels / 829
MAJOR TECHNIQUES (ONLINE ONLY)

1 Infrared and Microwave Spectroscopy
2 Ultraviolet and Visible Spectroscopy

3 X-ray Diffraction
4 Chromatography
5 Mass Spectrometry
6 Nuclear Magnetic Resonance
7 Computation

APPENDICES

APPENDIX 1 Symbols, Units, and Mathematical Techniques A1
1A Symbols /
1B Units and Unit Conversions A3
1C Scientific Notation / A5
1D Exponents and Logarithms / A6
1E Equations and Graphs / A7
1F Calculus / A8
APPENDIX 2 Experimental Data A9
2A Thermodynamic Data at $25^{\circ} \mathrm{C} / \mathrm{A} 9$
2B Standard Potentialsat $25^{\circ} \mathrm{C} / \mathrm{A} 16$
2C Ground-State ElectronConfigurations / A18
2D The Elements / / A19
APPENDIX 3 Nomenclature A25
3A The Nomenclature of Polyatomic Ions / A25
3B Common Names of Chemicals / A26
3C Traditional Names of Some Common Cations With Variable Charge Numbers / A26
GLOSSARY B1
ANSWERS C1
Self-Tests B C1
Odd-Numbered Exercises C12
INDEX D1

Chemical Principles

The central theme of this text is to challenge students to think and question, while providing a sound foundation in the principles of chemistry. Students of all levels also benefit from assistance in learning how to think, pose questions, and approach problems. We show students how to build models, refine them systematically in the light of experimental input, and express them quantitatively. To that end, Chemical Principles: The Quest for Insight, Seventh Edition, aims to build understanding and offer students a wide array of pedagogical support.

New Overall Organization

In this seventh edition, we have implemented a new organization. The content is presented as a series of 85 short Topics arranged into 11 thematic groups called Focuses. Our aim is twofold: to present reader and instructor with maximum flexibility and digestibility. We had a particular structure in mind when writing this edition, but instructors might have different ideas. Although the content is arranged along the lines of an atoms first approach, the division of Topics allows the instructor not only to tailor the text within the time constraints of the course, as it will be much easier to omit selected Topics, but also to take a path through the text that matches individual teaching and learning objectives. We have carefully avoided language that suggests the Topics should be read in the order they appear in the book. The student should also find the Topics easy to absorb and review, as each Topic is organized into smaller, more manageable sections. As such, since the Focuses are of very different lengths, instructors should target Topics, and not necessarily entire Focuses, when assigning content in their syllabi.

Each Focus begins with a brief discussion of how its Topics share a theme and how that theme links to others in the book. This contextual relationship is also captured visually by the "Road Map" that prefaces each Focus. We wanted to convey the intellectual structure of the subject, while leaving open the order of presentation.

Our core motivation is to help students to master the course content. Thus, each Topic opens with two questions a student typically faces: "Why do you need to know this material?", and "What do you need to know already?" The answers to the second question point to other Topics that we consider appropriate to have studied in advance of the Topic at hand. We listened to the thoughtful advice of our reviewers and have

Why Do You Need to Know This Material? lonic bonding is one of the principal forms of bonding between atoms. Understanding how bonds form between ions allows you to predict the formulas of ionic compounds and to estimate how strongly the ions are held together.

What Do You Need to Know Already? You need to know about electron configurations of manyelectron atoms (Topic 1E), the concept of potential energy, and the nature of the Coulomb interaction between charges (Fundamentals A). You need to be familiar with ionic radii and the ionization energy and electron affinity of elements (Topic 1F).
ensured that this new organization guides and supports instructors and students through the individual paths they choose, to provide an improved classroom experience. Even the Road Map is designed to be an encouragement to learn, because we show how each Topic is inspired by a conceptual question.

New to this edition, and specifi-

How Is That Explained...

...using kinetics?

The kinetic interpretation of equilibrium is based on a comparison of competing rates, in this instance, the rates of evaporation and condensation. Vapor forms as molecules leave the surface of the liquid through evaporation. However, as the number of molecules in the vapor increases, more of them are available to condense, that is, to strike the surface of the liquid, stick to it, and become part of the liquid again. Eventually, the rate of molecules returning to the liquid matches the rate escaping (FIG. 5A.2). The vapor is now condensing as fast as the liquid is vaporizing, and so the equilibrium is dynamic in the sense that both the forward and reverse processes are still occurring but now their rates are equal. The dynamic equilibrium between liquid water and its vapor is denoted

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Wherever the symbol \rightleftharpoons appears, it means that the species on both sides of it are in dynamic equilibrium with each other. With this picture in mind, the vapor pressure of a liquid (or a solid) can be defined as the pressure exerted by its vapor when the vapor and the liquid (or the solid) are in dynamic equilibrium with each other.

...using thermodynamics?

In the thermodynamic interpretation of equilibrium, the condensed and vapor phases of a substance are in equilibrium, denoted

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

when there is no change in Gibbs free energy, $\Delta G=0$ for the phase change process. In short, neither the forward nor the reverse process is spontaneous at equilibrium. The vapor pressure of a liquid (or a solid) is the pressure exerted by its vapor when the vapor and the liquid (or the solid) are in equilibrium with each other. cally to Focus 5 , is a new two-column approach for presenting derivations from both a kinetic and a thermodynamic viewpoint. This innovation aims to accommodate instructors who approach equilibrium from differing viewpoints and allows the instructors to take either path or to include both perspectives in their instruction.

Finally, we have collected all the Major Techniques in one group. These technique sections have been placed online for convenient access from laboratories or classroom, on our textbook catalog page: http://macmillanhighered.com/chemicalprinciples7e.

Reviewing the Basics

The Fundamentals sections are identified by green-edged pages. These sections provide a streamlined overview of the basics of chemistry. This material can be used either to provide a useful, succinct review of elementary material to which students can refer for extra help as they progress through the course, or as a concise survey of material before starting on the main text.

To support the Fundamentals sections pedagogically, we continue to provide the Fundamentals Diagnostic Test. This test allows instructors to determine what their students understand and where they need additional support. Instructors can then make appropriate assignments from the Fundamentals. The test includes 5 to 10 problems for each Fundamentals section. The diagnostic test was created by Cynthia LaBrake at the University of Texas, Austin. More information about the Fundamentals Diagnostic test can be found on our catalog page: http://macmillanhighered.com/chemicalprinciples7e.

Innovative Math Coverage

- What Does This Equation Tell You? helps students to interpret an equation in physical and chemical terms. We aim to show that math is a language that reveals aspects of reality.

The result of the calculation is that the work done when a system expands by ΔV against a constant external pressure $P_{\text {ex }}$ is

$$
\begin{equation*}
w=-P_{\mathrm{ex}} \Delta V \tag{3}
\end{equation*}
$$

This expression applies to all systems. A gas is easiest to visualize, but the expression also applies to an expanding liquid or solid. However, Eq. 3 applies only when the external pressure is constant during the expansion.

What Does This Equation Tell You? When the system expands, ΔV is positive. Therefore the minus sign in Eq. 3 tells you that the internal energy of the system decreases when the system expands. The factor P_{ex} tells you that more work is done for a given change in volume when the external pressure is high. The factor ΔV tells you that, for a given external pressure, more work is done the greater the change in volume.

- How Is That Done? The text is designed so that mathematical derivations are set apart from the body of the text, making it easy for instructors to avoid or assign this material. This feature, which is structured in a way that encourages students to appreciate the power of math (by showing that vital progress depends on it), sets off derivations of key equations from the rest of the text. Virtually all the calculus in the text is confined to this feature, so it can be avoided if appropriate. For instructors who judge that their students can cope with this material and who want their students to realize the power that math puts into their hands, these derivations provide that encouragement. A selection of end-of-Focus exercises that make use of calculus is provided and marked with an icon: $\iint_{\mathrm{d} x}^{\mathrm{C}}$. Some derivations that we consider to be beyond this level but are useful as a resource, are located on the website.

How Is That Done?

To calculate the fraction of occupied space in a close-packed structure, consider a ccp structure. First, look at how the cube is built from the spheres representing the atoms. FIGURE 3H. 18 shows that eight spheres lie at the corners of the cubes. Only $\frac{1}{8}$ of each of these spheres projects into the cube, so the eight corner spheres collectively contribute $8 \times \frac{1}{8}=1$ sphere to the cube. Half a sphere on each of the six faces projects into the cube, so the spheres on each face contribute $6 \times \frac{1}{2}=3$ spheres, giving four spheres in all within the cube. The length of the diagonal of the face of the cube shown in Fig. 3H. 18 is $4 r$, where r is the radius of the sphere. Each of the two corner spheres contributes r and the sphere at the center of the face contributes $2 r$. According to the Pythagorean theorem, the length of the side of the face, a, is related to the diagonal by $a^{2}+a^{2}=(4 r)^{2}$, or $2 a^{2}=16 r^{2}$, and so $a=8^{1 / 2} r$. The volume of the cube is therefore $a^{3}=8^{3 / 2} r^{3}$. The volume of each sphere is $\frac{4}{3} \pi r^{3}$, so the total volume of the spheres inside the cube is $4 \times \frac{4}{3} \pi r^{3}=\frac{16}{3} \pi r^{3}$. The ratio of this occupied volume to the total volume of the cube is therefore

$$
\frac{\text { Total volume of spheres }}{\text { Total volume of cube }}=\frac{(16 / 3) \pi r^{3}}{8^{3 / 2} r^{3}}=\frac{16 \pi}{3 \times 8^{3 / 2}}=0.74 \ldots
$$

- Annotated equations help students interpret an equation and see the connection between symbols and numerical values. We consider the correct use of units an important part of a student's vocabulary, not only because it is a part of the international language of chemistry but also because it encourages a systematic approach to calculations; in more complicated or unfamiliar contexts, we also use annotations to explain the manipulation of units.

$$
w=-\overbrace{(0.100 \mathrm{~mol})}^{n} \times \overbrace{\left(8.3145 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)}^{R} \times \overbrace{(298 \mathrm{~K})}^{T} \times \frac{\overbrace{\ln \frac{V_{2} / 00 \mathrm{~L}}{1.00 \mathrm{~L}}}^{V_{2}}=-172 \mathrm{~J} . \mathrm{V}}{1 .}
$$

Emphasis on Problem Solving

- Notes on Good Practice encourage conformity to the language of science by setting out the language and procedures adopted by the International Union of Pure and Applied Chemistry (IUPAC). In many cases, they identify common mistakes and explain how to avoid them.

A Note on Good Practice: A property y is said to "vary linearly with x " if the relation between y and x can be written $y=b+m x$, where b and m are constants. A property y is said to be "proportional to x " if $y=m x$ (that is, $b=0$).

- Anticipate/Plan/Solve/Evaluate Strategy. This problem-solving approach encourages students to anticipate or predict what a problem's answer should be qualitatively and to map out the solution before trying to solve the problem quantitatively. Following the solution, the original anticipation is evaluated. Students are often

puzzled about what they should assume in a calculation; many worked examples now include an explicit statement about what should be assumed. Because students process information in different ways, many steps in the worked examples are broken down into three components: a qualitative statement about what is being done, a quantitative explanation with the mathematics worked out, and a visual representation to aid with interpreting each step.
- Real-world contexts for Worked Examples. We want to motivate students and encourage them to see that the calculations are relevant to all kinds of careers and applications. With that aim in mind, we pose the problem in a context in which such calculations might occur.
- Self-Tests are provided as pairs throughout the book. They enable students to test their understanding of the material covered in the preceding section or worked example. The answer to the first self-test is provided immediately, and the answer to the second can be found at the back of the book.
- Thinking Points encourage students to speculate about the implications of what they are learning and to transfer their knowledge to new situations. This edition now provides instructors with suggested answers to the Thinking Points online on the textbook's catalog page: http://macmillanhighered.com/chemicalprinciples7e.

THINKING POINT

By what factor does the unique average reaction rate change if the coefficients in a chemical equation are doubled?

- Toolboxes show students how to tackle major types of calculations and demonstrate how to connect concepts to problem solving. The Toolboxes are designed as learning aids and handy summaries of key material. Each summarizes the conceptual basis of the following steps, because we are concerned that students understand what they are doing as well as be able to do it. Each Toolbox is followed immediately by one or more related Examples; these Examples apply the problem-solving strategy outlined in the Toolbox and illustrate each step of the procedure explicitly.

Toolbox 6H. 2 HOW TO CALCULATE THE pH DURING A TITRATION OF A WEAK ACID OR A WEAK BASE

CONCEPTUAL BASIS

The pH is governed by the major solute species present in solution. As strong base is added to a solution of a weak acid, a salt of the conjugate base of the weak acid is formed. This salt affects the pH and needs to be taken into account. TABLE 6 H .1 outlines the regions encountered during a titration and the primary equilibrium to consider in each region.

PROCEDURE

The procedure is like that in Toolbox 6H.1, except that an additional step is required to calculate the pH from the proton transfer equilibrium. First use reaction stoichiometry to find the amount of excess acid or base. Begin by writing the chemical equation for the reaction, then:
Step 1 Calculate the amount of weak acid or base in the original analyte solution. Use $n_{\mathrm{J}}=V_{\text {analyte }}[\mathrm{J}]$.
Step 2 Calculate the amount of OH^{-}ions (or $\mathrm{H}_{3} \mathrm{O}^{+}$ions if the titrant is an acid) in the volume of titrant added. Use $n_{\mathrm{J}}=V_{\text {titrant }}[\mathrm{J}]$.
Step 3 Use reaction stoichiometry to calculate the following amounts:

- Weak acid-strong base titration: the amount of conjugate base formed in the neutralization reaction, and the amount of weak acid remaining.
- Weak base-strong acid titration: the amount of conjugate acid formed in the neutralization reaction, and the amount of weak base remaining.
Calculate the concentrations.
Step 4 Find the "initial" molar concentrations of the conjugate acid and base in solution after neutralization, but before any proton transfer equilbrium with water is taken into account. Use $[\mathrm{J}]=n_{J} / V$, where V is the total volume of the solution, $V=V_{\text {analyte }}+V_{\text {titrant }}$.
Calculate the pH .
Step 5 Use the expression for K_{a} or K_{b} to find the $\mathrm{H}_{3} \mathrm{O}^{+}$ concentration in a weak acid or the OH^{-}concentration in a weak base. Alternatively, if the concentrations of conjugate acid and base calculated in step 4 are both large relative to the concentration of hydronium ions, use them in the HendersonHasselbalch equation, Eq. 2 of Topic 6G, $\mathrm{pH} \approx \mathrm{p} K_{\mathrm{a}}+$ $\log \left([\text { base }]_{\text {initial }} /[\text { acid }]_{\text {initial }}\right)$, to determine the pH . In each case, if the pH is less than 6 or greater than 8 , assume that the autoprotolysis of water does not significantly affect the pH . If necessary, convert between K_{a} and K_{b} by using $K_{\mathrm{a}} \times K_{\mathrm{b}}=K_{\mathrm{w}}$.
This procedure is illustrated in Example 6H.3.
- "The skills you have mastered are the ability to:" are checklists of key concepts provided at the end of each Topic. These checklists not only are a reminder of the subjects with which students should feel comfortable by the end of the topic but also offer a satisfying opportunity to check off the items that they consider they have grasped.

The skills you have mastered are the ability to:

1. Determine the activation energy from the experimental temperature dependence of reaction rate constants (Example 7D.1).
2. Predict the rate constant for a reaction at a new temperature if the activation energy and rate constant at one temperature are known (Example 7D.2).
3. Discuss the Arrhenius parameters, A and E_{a}, in terms of models of reactions (Sections 7D. 2 and 7D.3).

- Margin Notes are brief asides, placed in the margin right next to the relevant text, that provide an extra note of help to clarify concepts or usage or to make a historical point.

The VSEPR model was first proposed by the British chemists Nevil Sidgwick and Herbert Powell and has been developed by the Canadian chemist Ronald Gillespie.

Lewis structures (Topics 2B and 2C) show only how the atoms are connected and how the electrons are arranged around them. The valence-shell electron-pair repulsion model (VSEPR model) extends Lewis's theory of bonding by adding rules that account for bond angles and molecular shapes:

- NEW! Interludes describe a number of contemporary applications of chemistry by showing how chemistry is being used in a variety of modern contexts. New for this edition, there are five interludes, placed between various Focuses.
- NEW! Topic- and Focus-Specific Exercises give students the opportunity to practice solving problems that draw upon one Topic (these appear at the end of every Topic) and exercises that include and combine concepts from the entire Focus (these appear at the end of each Focus).

Topic 31 Exercises

31.1 Estimate the relative density (compared to pure aluminum) of magnalium, a magnesium-aluminum alloy in which 30.0% of the aluminum atoms have been replaced by magnesium atoms without distortion of the crystal structure.
31.2 Estimate the relative density (compared to pure copper) of aluminium bronze, an alloy that is 8.0% by mass aluminium. Assume no distortion of the crystal structure.
31.9 A unit cell for the calcite structure can be found at http://webmineral.com. From this structure, identify (a) the crystal system and (b) the number of formula units present in the unit cell.
31.10 Consult http://webmineral.com and examine the unit cells of calcite and dolomite. (a) In what respects are these two structures the same? (b) In what respect are they different? (c) Where are the magnesium and calcium ions located in dolomite?

The following Example and Exercises draw on material from throughout Focus 3.

FOCUS 3 Online Cumulative Example

Some of the earliest mortars were nonhydraulic cements, which harden by reaction with CO_{2} rather than with water. These cements are prepared by heating calcite, $\mathrm{CaCO}_{3}(\mathrm{~s})$, strongly to drive off CO_{2} gas and form quicklime, $\mathrm{CaO}(\mathrm{s})$. The resulting solid is mixed with water to give a paste of slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$, to which sand or volcanic ash is added to form lime mortar. The Roman Colosseum and Pantheon were constructed with this type of mortar and have endured the ages. You are investigating ancient building methods and want to understand the chemistry of these materials.
(a) Write the balanced chemical equations for (i) the conversion of calcite to quicklime, (ii) the reaction of quicklime with water to form slaked lime, and (iii) the reaction of slaked lime with CO_{2} to form calcium carbonate.
(b) Preparing quicklime releases the greenhouse gas carbon dioxide. If $1.000 \mathrm{t}\left(1 \mathrm{t}=10^{3} \mathrm{~kg}\right)$ of CaCO_{3} is placed in a kiln and heated to $850{ }^{\circ} \mathrm{C}$, what volume of $\mathrm{CO}_{2}(\mathrm{~g})$ is formed at $850^{\circ} \mathrm{C}$ and 1 atm ?
(c) If the $\mathrm{CO}_{2}(\mathrm{~g})$ from part (b) is cooled to room temperature of $22^{\circ} \mathrm{C}$ what volume would it occupy?
(d) Calcium oxide has the cubic structure shown in (1). The length of each edge is 481.1 pm . All the atoms are on an edge, face, or corner of the cube with one O atom in the center of the cube. Use this information and the density of $\mathrm{CaCO}_{3}(\mathrm{~s}), 2.711 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, to calculate the change in volume of the solid as CO_{2} is driven off from 1.0 t of CaCO_{3}.

1 Calcium oxide, CaO
(e) From the results in part (d), suggest a reason why buildings constructed of bricks held together with lime mortar might collapse during a fire.

The online Cumulative Example solution can be found at http://macmillanhighered.com/chemicalprinciples7e

FOCUS 3 Exercises

3.1 The drawing below shows a tiny section of a flask containing two gases. The orange spheres represent neon atoms and the blue spheres represent argon atoms. (a) If the partial pressure of neon in this mixture is 420 . Torr, what is (a) the partial pressure of argon; (b) the total pressure?

3.2 The four flasks below were prepared with the same volume

Given that the partial pressure of carbon sphere is 0.26 Torr and that the temperatu the volume of air at 1.0 atm needed to prod
3.4 Roommates fill ten balloons for a part and five with helium. After the party the hy lost one-fifth of their hydrogen due to effus of the balloons. What fraction of helium w have lost at that same time?
3.5 Suppose that 200. mL of hydrogen chl and $20 .{ }^{\circ} \mathrm{C}$ is dissolved in $100 . \mathrm{mL}$ of water.

- NEW! Online worked examples. Each Focus ends with a Cumulative Example that challenges students to combine their understanding of concepts from several parts of the Focus. Full solutions presented in the same format as the worked examples in the text are available to students on the book's online catalog page: http://macmillanhighered.com/chemicalprinciples7e.

Improved Illustration Program

- NEW! All the line art has been redrawn or refreshed for this edition using a new and more vibrant color palette.
- We have replaced many of the photographs with more revealing and often more relevant images.

FIGURE 5D. 1 The events that take place at the interface of a solid ionic solute and a solvent (water). Only the surface layer of ions is shown. When the ions at the surface of the solid become hydrated, they move off into the solution. The insets at the right show the ions alone.

Contemporary Chemistry for All Students

Chemistry has an extraordinary range of applications, and we have sought to be inclusive and extensive in our discussion and use of examples. The brief contextual remarks in the worked examples help to illustrate this range. So too do some of the end-of-Focus exercises and the boxes that illustrate modern applications that occur throughout the text. We have kept in mind that engineers need a knowledge of chemistry, that biologists need a knowledge of chemistry, and that anyone anticipating a career in which materials are involved needs chemistry. Specific points relevant to the study of green chemistry are noted with an icon: 2^{9}. An important aspect of chemistry is that it provides transferable skills that can be deployed in a wide variety of careers; we have kept that in mind throughout, by showing readers how to think systematically, to build models based on observation, to be aware of magnitudes, to express qualitative ideas, concepts, and models quantitatively, and to interpret mathematical expressions physically.

Media and Supplements

For Students

We believe a student needs to interact with a concept several times in a variety of scenarios in order to obtain a thorough understanding. With that in mind, Macmillan Learning has developed a comprehensive package of student learning resources.

Printed Resources

Student Study Guide, by John Krenos, Rutgers University
ISBN: 1-319-01755-X
The Student Study Guide helps students to improve their problem-solving skills, avoid common mistakes, and understand key concepts. After a brief review of each Topic's critical ideas, students are taken through worked-out examples, try-it-yourself examples, and quizzes, all structured to reinforce the text's objectives and build problem-solving techniques.

Student Solutions Manual, by Laurence Lavelle, University of California, Los Angeles; Yinfa Ma, Missouri University of Science and Technology; and Christina Johnson, University of California, San Diego

ISBN: 1-319-01756-8

The Student Solutions Manual follows the problem-solving structure set out in the main text and includes detailed solutions to all odd-numbered exercises in the text.

Media Resources

The Chemical Principles student resources at http://macmillanhighered.com/chemicalprinciples7e provide a range of tools for problem solving and chemical explorations.

- Solutions to Cumulative Examples. Each Focus ends with a Cumulative Example that combines concepts from several parts of the Focus. Full solutions, presented in the same format as the worked examples in the text, are available to students on the catalog page.
- Major Techniques have been placed online for convenient access.
- Media Tools:
- Living Graphs allow the user to control the parameters.
- Animations from the Vischem group are once again available to students and instructors.
- Lab Videos are connected to figures in the text and demonstrate a laboratory experiment.
- Molecule Database links to ChemSpider, a free database of chemical structures, providing students access to information on over 35 million structures from hundreds of data sources. ChemSpider ID numbers have been provided in selected exercises to help students find the correct structures.
- ChemCasts replicate the face-to-face experience of watching an instructor work a problem. Using a virtual whiteboard, these video tutors show students the steps involved in solving key worked examples, while explaining the concepts along the way. They are easy to view on a computer screen or to download to a tablet or other media player.
- Key Equations, a compilation of key equations from the text
- Interactive Periodic Table of Elements links to www.Ptable.com, a dynamic periodic table with extensive information about each of the elements.

For Instructors

Whether you are teaching the course for the first time or the hundredth time, the Instructor Resources to accompany Chemical Principles provide the resources you need to make teaching preparation efficient.

Media Resources

Instructors can access valuable teaching tools through the Chemical Principles catalog page, http://macmillanhighered.com/chemicalprinciples7e. These resources are designed to aid the instructor throughout the teaching experience. They include:

- Instructor's Solutions Manual, by Laurence Lavelle, University of California, Los Angeles; Yinfa Ma, Missouri University of Science and Technology; and Christina Johnson, University of California, San Diego, which contains full, worked-out solutions to all even-numbered exercises in the text.
- Updated Illustrations from the textbook are offered as high-resolution .jpeg files and in PowerPoint format.
- Newly Updated Lecture PowerPoints with Integrated Clicker Questions have been developed to minimize preparation time for new users of the book. These files offer suggested lectures, including key illustrations, summaries, and clicker questions that instructors can adapt to their teaching styles.
- Test Bank, by Robert Balahura, University of Guelph, and Mark Benvenuto, University of Detroit, Mercy, which offers over 1400 multiple-choice, fill-in-theblank, and essay questions and is available exclusively on the book's catalog page.

Online Learning Environment

Sapling Learning

www.saplinglearning.com

Developed by educators with both online expertise and extensive classroom experience, Sapling Learning provides highly effective interactive homework and instruction that improve student learning outcomes for the problem-solving disciplines. Sapling Learning offers an enjoyable teaching and effective learning experience that is distinctive in three important ways:

- Ease of Use: Sapling Learning's easy-to-use interface keeps students engaged in problem solving, not struggling with software.
- Targeted Instructional Content: Sapling Learning increases student engagement and comprehension by delivering immediate feedback and targeted instructional content.
- Unsurpassed Service and Support: Sapling Learning makes teaching more enjoyable by providing a dedicated Masters- or Ph.D.-level colleague to serve instructors' unique needs throughout the course, including help with content customization.

We offer bundled packages that include Sapling Learning Online Homework with all versions of our text.

Lab Resources

Available stand-alone or bundled with the text for a nominal charge. ACS Molecular Structure Model Set, by Maruzen Company, Ltd.
ISBN: 0-7167-4822-3
Molecular modeling helps students understand physical and chemical properties by providing a way to visualize the three-dimensional arrangement of atoms. This model set uses polyhedra to represent atoms and plastic connectors to represent bonds (scaled to correct bond length). Plastic plates representing orbital lobes are included for indicating lone pairs of electrons, radicals, and multiple bonds-a feature unique to this set.

Acknowledgments

We are grateful to the many instructors, colleagues, and students who have contributed their expertise to this edition and to all the preceding editions. We would like above all to thank those who evaluated the seventh edition so carefully and helped us to develop the new organization:

Natalya Bassina, Boston University
Charles Carraher, Florida Atlantic University
Patricia Christie, Massachusetts Institute of Technology
Gregory M. Ferrence, Illinois State University
David Finneran, Miami Dade College
James Fisher, Imperial Valley College
Teresa Garrett, Vassar College
Dawit Gizachew, Purdue University Calumet
Susan Green, Macalester College
P. Shiv Halasyamani, University of Houston

Vlad M. Iluc, University of Notre Dame
Elon Ison, North Carolina State University
Adam Johnson, Harvey Mudd College
Humayun Kabir, Oglethorpe University
James I. Lankford, St. Andrews University
Susan Maleckar, University of Pittsburgh
Lynn Mandeltort, Auburn University
David W. Millican, Guilford College
Apryl Nenortas, Clovis Community College

Brian Northrop, Wesleyan University
John W. Overcash, University of Illinois
Pat Owens, Winthrop University
Rene Rodriguez, Idaho State University
Michael P. Rosynek, Texas $A \leftrightarrow M$ University
Suzanne Saum, Washington University
Carlos Simmerling, Stony Brook University
Thomas Speltz, DePaul University
Melissa Strait, Alma College
John Straub, Boston University
Hal Van Ryswyk, Harvey Mudd College
Kirk Voska, Rogers State University
Dunwei Wang, Boston College
Kim Weaver, Southern Utah University
Scott Weinert, Oklahoma State University
Carl T. Whalen, Central New Mexico Community College
Kenton H. Whitmire, Rice University
Burke Scott Williams, Claremont McKenna

The contributions of the reviewers of the first, second, third, fourth, fifth, and sixth editions remain embedded in the text, so we also wish to renew our thanks to:

Rebecca Barlag, Ohio University
Thomas Berke, Brookdale Community College
Amy Bethune, Albion College
Lee Don Bienski, Blinn Community College
Simon Bott, University of Houston
Luke Burke, Rutgers University-Camden
Rebecca W. Corbin, Ashland University
Charles T. Cox, Jr., Stanford University
Irving Epstein, Brandeis University
David Esjornson, Southwest Oklahoma State University

Theodore Fickel, Los Angeles Valley College
David K. Geiger, State University of New York-Geneseo
John Gorden, Auburn University
Amy C. Gottfried, University of Michigan
Myung Woo Han, Columbus State Community College
James F. Harrison, Michigan State University
Michael D. Heagy, New Mexico Tech
Michael Hempstead, York University
Byron Howell, Tyler Junior College
Gregory Jursich, University of Illinois at Chicago

Jeffrey Kovac, University of Tennessee
Evguenii Kozliak, University of North Dakota
Main Campus
Richard Lavallee, Santa Monica College
Laurence Lavelle, University of California, Los Angeles
Hans-Peter Loock, Queens University
Yinfa Ma, Missouri University of Science and Technology
Marcin Majda, University of California, Berkeley
Diana Mason, University of North Texas
Thomas McGrath, Baylor University
Shelly Minteer, University of Utah
Nixon Mwebi, Jacksonville State University
Maria Pacheco, Buffalo State College
Hansa Pandya, Richland College
Gregory Peters, Wilkes University
Britt Price, Grand Rapids Community College
Robert Quant, Illinois State University
Christian R. Ray, University of Illinois at Urbana-Champaign
William Reinhardt, University of Washington
Michael P. Rosynek, Texas A $\preccurlyeq M$
George Schatz, Northwestern University
David Shaw, Madison Area Technical College
Conrad Shiba, Centre College
Lothar Stahl, University of North Dakota
John B. Vincent, University of Alabama
Kirk W. Voska, Rogers State University
Joshua Wallach, Old Dominion University
Meishan Zhao, University of Chicago
Thomas Albrecht-Schmidt, Auburn University
Matthew Asplund, Brigham Young University
Matthew P. Augustine, University of California, Davis
Yiyan Bai, Houston Community College System Central Campus
David Baker, Delta College
Alan L. Balch, University of California, Davis
Maria Ballester, Nova Southeastern University
Mario Baur, University of California, Los Angeles
Robert K. Bohn, University of Connecticut
Paul Braterman, University of North Texas
William R. Brennan, University of Pennsylvania
Ken Brooks, New Mexico State University
Julia R. Burdge, University of Akron
Paul Charlesworth, Michigan Technological University
Patricia D. Christie, Massachusetts Institute of Technology
William Cleaver, University of Vermont
Henderson J. Cleaves, II, University of California, San Diego
David Dalton, Temple University
J. M. D'Auria, Simon Fraser University

James E. Davis, Harvard University
Walter K. Dean, Lawrence Technological University Ivan J. Dmochowski, University of Pennsylvania

Jimmie Doll, Brown University
Ronald Drucker, City College of San Francisco
Jetty Duffy-Matzner, State University of New York, Cortland
Christian Ekberg, Chalmers University of Technology, Sweden
Robert Eierman, University of Wisconsin
Bryan Enderle, University of California, Davis
David Erwin, Rose-Hulman Institute of Technology
Kevin L. Evans, Glenville State College
Justin Fermann, University of Massachusetts
Donald D. Fitts, University of Pennsylvania
Lawrence Fong, City College of San Francisco
Regina F. Frey, Washington University
Dennis Gallo, Augustana College
P. Shiv Halasyamani, University of Houston

David Harris, University of California, Santa Barbara
Sheryl Hemkin, Kenyon College
Michael Henchman, Brandeis University
Geoffrey Herring, University of British Columbia
Jameica Hill, Wofford College
Timothy Hughbanks, Texas A $\measuredangle M$ University
Paul Hunter, Michigan State University
Keiko Jacobsen, Tulane University
Alan Jircitano, Penn State, Erie
Robert C. Kerber, State University of New York, Stony Brook
Robert Kolodny, Armstrong Atlantic State University
Lynn Vogel Koplitz, Loyola University
Petra van Koppen, University of California, Santa Barbara
Mariusz Kozik, Canisius College
Julie Ellefson Kuehn, William Rainey Harper College
Cynthia LaBrake, University of Texas, Austin
Brian B. Laird, University of Kansas
Gert Latzel, Riemerling, Germany
Nancy E. Lowmaster, Allegheny College
Yinfa Ma, Missouri University of Science and Technology
Paul McCord, University of Texas, Austin
Alison McCurdy, Harvey Mudd College
Charles W. McLaughlin, University of Nebraska
Matthew L. Miller, South Dakota State University
Clifford B. Murphy, Boston University
Maureen Murphy, Huntingdon College
Patricia O'Hara, Amherst College
Noel Owen, Brigham Young University
Donald Parkhurst, The Walker School
Enrique Peacock-Lopez, Williams College
LeRoy Peterson, Jr., Francis Marion University
Montgomery Pettitt, University of Houston
Joseph Potenza, Rutgers University
Wallace Pringle, Wesleyan University
Philip J. Reid, University of Washington
Tyler Rencher, Brigham Young University
Michael Samide, Butler University

Gordy Savela, Itasca Community College
Barbara Sawrey, University of California, San Diego
George Schatz, Northwestern University
Paula Jean Schlax, Bates College
Carl Seliskar, University of Cincinnati
Robert Sharp, University of Michigan, Ann Arbor
Peter Sheridan, Colgate University
Jay Shore, South Dakota State University
Herb Silber, San Jose State University
Lori Slavin, College of Saint Catherine
Lee G. Sobotka, Washington University
Mike Solow, City College of San Francisco
Michael Sommer, Harvard University
Nanette A. Stevens, Wake Forest University
John E. Straub, Boston University
Laura Stultz, Birmingham-Southern College
Tim Su, City College of San Francisco
Peter Summer, Lake Sumter Community College
Sara Sutcliffe, University of Texas, Austin

Larry Thompson, University of Minnesota, Duluth
Dino Tinti, University of California, Davis
Sidney Toby, Rutgers University
David Vandenbout, University of Texas, Austin
Deborah Walker, University of Texas, Austin
Lindell Ward, Franklin College
Thomas R. Webb, Auburn University
Peter M. Weber, Brown University
David D. Weis, Skidmore College
Ken Whitmire, Rice University
James Whitten, University of Massachusetts
Lowell David W. Wright, Vanderbilt University
Gang Wu, Queen's University
Mamudu Yakubu, Elizabeth City State University
Meishan Zhao, University of Chicago
Zhiping Zheng, University of Arizona
Marc Zimmer, Connecticut College
Martin Zysmilich, Massachusetts Institute of Technology

Some contributed in substantial ways. Roy Tasker, Purdue University, contributed to the website for this book and designed related animations. Kent Gardner (Thundercloud Consulting) redesigned the living graphs on the website for this book. Michael Cann, University of Scranton, opened our eyes to the world of green chemistry in a way that has greatly enriched this book. We would also like to thank Nathan Barrows, Grand Valley State University, for contributing to the Self-Test answers and for generating the ChemCast problem-solving videos. The supplements authors, especially John Krenos, Laurence Lavelle, Yinfa Ma, and Christina Johnson have offered us a great deal of useful advice. Valerie Keller, University of Chicago, provided careful checking of all the solutions. Many others wrote to us with advice, and reviewers were particularly helpful and influential. We are grateful to them all.

We are also grateful to the staff at W. H. Freeman and Company, who understood our vision and helped to bring it to fruition. Among so many we could mention, our special thanks go to Alicia Brady, chemistry editor, who offered guidance and support; Heidi Bamatter, our development editor, who brought keen insight and conscientious oversight to many aspects of this edition; Liz Geller, senior project editor, who guided the complex process through production; Marjorie Anderson, our copyeditor, who polished our text; Robin Fadool and Richard Fox, our photo and licensing editors; Marsha Cohen and Blake Logan, who provided sparkling designs; Susan Wein, who supervised composition and printing; and Amy Thorne, who directed the development and production of the media supplements. We also thank the Aptara staff for turning our manuscript into a finished product. The authors could not have wished for a better or more committed team.

Welcome to chemistry! You are about to embark on a remarkable journey that will take you to the center of science. Looking in one direction, toward physics, you will see how the principles of chemistry are based on the behavior of atoms and molecules. Looking in another direction, toward biology, you will see how chemists contribute to an understanding of that most awesome property of matter, life. Eventually, you will be able to look at an everyday object, see in your mind's eye its composition in terms of atoms, and understand how that composition determines its properties.

Introduction and Orientation

Chemistry is the science of matter and the changes it can undergo. The world of chemistry therefore embraces everything material around us-the stones you stand on, the food you eat, the flesh you are made of, and the silicon in your computers. There is nothing material beyond the reach of chemistry, be it living or dead, vegetable or mineral, on Earth or in a distant star.

Chemistry and Society

In the earliest days of civilization, when the Stone Age gave way to the Bronze Age and then to the Iron Age, people did not realize that they were doing chemistry when they changed the material they found as stones-they would now be called minerals-into metals (FIG. 1). The possession of metals gave them a new power over their environment, and treacherous nature became less brutal. Civilization emerged as skills in transforming materials grew: glass, jewels, coins, ceramics, and, inevitably, weapons became more varied and effective. Art, agriculture, and warfare became more sophisticated. None of this would have happened without chemistry.

The development of steel accelerated the profound impact of chemistry on society. Better steel led to the Industrial Revolution, when muscles gave way to steam and giant enterprises could be contemplated. With improved transport and greater output from

FIGURE 1 Copper is easily extracted from its ores and was one of the first metals worked. The Bronze Age followed the discovery that adding some tin to copper made the metal harder and stronger. These four bronze swords date from 1250 to 850 BCE, the Late Bronze Age, and are from a collection in the Naturhistorisches Museum, Vienna, Austria. From bottom to top, they are a short sword, an antenna-type sword, a tongue-shaped sword, and a Liptau-type sword. (Erich Lessing/Art Resource, NY.)

FIGURE 2 Cold weather triggers chemical processes that reduce the amount of the green chlorophyll in leaves, allowing the colors of various other pigments to show. (David Q. Cavagnaro/Photolibrary/Getty Images.)

FIGURE 3 When magnesium burns in air, it gives off a lot of heat and light. The gray-white powdery product looks like smoke. (©1991 Richard MegnaFundamental Photographs.)

LAB VIDEO FIGURE 3
factories came more extensive trade, and the world became simultaneously a smaller but busier place. None of this would have happened without chemistry.

With the twentieth century, and now the twenty-first, came enormous progress in the development of the chemical industry. Chemistry transformed agriculture. Synthetic fertilizers provided the means of feeding the enormous, growing population of the world. Chemistry transformed communication and transportation. Today chemistry provides advanced materials, such as polymers for fabrics, ultrapure silicon for computers, and glass for optical fibers. It is producing more efficient renewable fuels and the tough, light alloys that are needed for modern aircraft and space travel. Chemistry has transformed medicine, substantially extended life expectancy, and provided the foundations of genetic engineering. The deep understanding of life that we are developing through molecular biology is currently one of the most vibrant areas of science. None of this progress would have been achieved without chemistry.

However, the price of all these benefits has been high. The rapid growth of industry and agriculture, for instance, has stressed the Earth and damaged our inheritance. There is now widespread concern about the preservation of our extraordinary planet. It will be up to you and your contemporaries to draw on chemistry-in whatever career you choose-to build on what has already been achieved. Perhaps you will help to start a new phase of civilization based on new materials, just as semiconductors transformed society in the twentieth century. Perhaps you will help to reduce the harshness of the impact of progress on our environment. To do that, you will need chemistry.

Chemistry: A Science at Three Levels

Chemistry can be understood at three levels. At one level, chemistry is about matter and its transformations. This is the level at which you can see the changes, as when a leaf changes color in the fall (FIG. 2) or magnesium burns brightly in air (FIG. 3). This level is the macroscopic level, the level dealing with the properties of large, visible objects. However, there is an underworld of change, a world that you cannot see directly. At this deeper, microscopic level, chemistry interprets these phenomena in terms of the rearrangements of atoms (FIG. 4). The third level is the symbolic level, the expression of chemical phenomena in terms of chemical symbols and mathematical equations. A chemist thinks at the microscopic level, conducts experiments at the macroscopic level, and represents both symbolically. These three aspects of chemistry can be mapped as a triangle (FIG. 5). As you read further in this text, you will find that sometimes the topics and explanations are close to one vertex of the triangle, sometimes to another. Because it is helpful in understanding chemistry to make connections among these levels, in the worked examples in this book you will find drawings of the molecular level as well as graphical interpretations of equations. As your understanding of chemistry grows, so will your ability to travel easily within the triangle as you connect, for example, a laboratory observation to the symbols on a page and to mental images of atoms and molecules.

How Science Is Done

Scientists pursue ideas in an ill-defined but effective way called the scientific method. There is no strict rule of procedure that will lead you from a good idea to a Nobel Prize or even to a publishable discovery. Some scientists are meticulously careful; others are highly creative. The best scientists are probably both careful and creative. Although there are various scientific methods in use, a typical approach consists of a series of steps (FIG. 6). The first step is often to collect data, the record of observations and measurements. These measurements are usually made on small samples of matter, representative pieces of the material being studied.

Scientists are always on the lookout for patterns. When a pattern is observed in the data, it can be stated as a scientific law, a succinct summary of a wide range of observations. For example, water was found to have eight times the mass of oxygen as it has of
hydrogen, regardless of the source of the water or the size of the sample. One of the earliest laws of chemistry summarized those types of observations as the law of constant composition, which states that a compound has the same composition regardless of the source of the sample.

Formulating a law is just one way, not the only way, of summarizing data. There are many properties of matter (such as superconductivity, the ability of a few cold solids to conduct electricity without any resistance) that are currently at the forefront of research but are not described by grand "laws" that embrace hundreds of different compounds. A major current puzzle, which might be resolved in the future either by finding the appropriate law or by detailed individual computation, is what determines the shapes of protein molecules such as those that govern almost every aspect of life, including serious diseases such as Alzheimer's, Parkinson's, and cancer.

Once they have detected patterns, scientists may develop hypotheses, possible explanations of the laws-or the observations-in terms of more fundamental concepts. Observation requires careful attention to detail, but the development of a hypothesis requires insight, imagination, and creativity. In 1807, John Dalton interpreted experimental results to propose his atomic hypothesis, that matter consists of atoms. Although Dalton could not see individual atoms, he was able to imagine them and formulate his hypothesis. Dalton's hypothesis was a monumental insight that helped others to understand the world in a new way. The process of scientific discovery never stops. With luck and application, you may acquire that kind of insight as you read through this text, and one day you may make your own extraordinary and significant hypotheses.

After formulating a hypothesis, scientists design further experiments-carefully controlled tests-to verify it. Designing and conducting good experiments often requires ingenuity and sometimes good luck. If the results of repeated experimentsoften in other laboratories and sometimes by skeptical coworkers-support the hypothesis, scientists may go on to formulate a theory, a formal explanation of a law. Quite often the theory is expressed mathematically. A theory originally envisioned as a qualitative concept-a concept expressed in words or pictures-is converted into a

FIGURE 6 A summary of the principal activities in a common version of the scientific method. The ideas proposed must be tested and possibly revised at each stage.

FIGURE 4 When a chemical reaction takes place, atoms exchange partners, as in Fig. 3, where magnesium and oxygen atoms form magnesium oxide. As a result, two forms of matter (left inset) are changed into another form of matter (right inset). Atoms are neither created nor destroyed in chemical reactions. (Photo: ©1991 Richard Megna-Fundamental Photographs.)

FIGURE 5 This triangle illustrates the three modes of scientific inquiry used in chemistry: macroscopic, microscopic, and symbolic. Sometimes chemists work more at one corner than at the others, but it is important to be able to move from one approach to another inside the triangle.

FIGURE 7 Scientific research today often requires sophisticated equipment and computers. These scientists are using a using a portable gamma spectrometer to measure gamma radiation levels near Quezon City in the Philippines. (Bullit Marquez/AP Photo.)
quantitative form-the same concept expressed in terms of mathematics. After a concept has been expressed quantitatively, it can be used to make numerical predictions and is subjected to rigorous experimental confirmation. You will have plenty of practice with the quantitative aspects of chemistry while working through this text.

Scientists commonly interpret a theory in terms of a model, a simplified version of the object of study that they can use to make predictions. Like hypotheses, theories and models must be subjected to experiment and revised if experimental results do not support them. For example, the current model of the atom has gone through many formulations and progressive revisions, starting from Dalton's vision of an atom as an uncuttable solid sphere to the current, much more detailed model, which is described in Focus 1. One of the goals of this text is to show you how chemists build models, turn them into a testable form, and then refine them in the light of additional evidence.

The Branches of Chemistry

Chemistry is more than test tubes and beakers. New technologies have transformed chemistry dramatically in the past 50 years, and new areas of research have emerged (FIG. 7). Traditionally, the field of chemistry has been organized into three main branches: organic chemistry, the study of compounds of carbon; inorganic chemistry, the study of all the other elements and their compounds; and physical chemistry, the study of the principles of chemistry.

New areas of study have developed as information has been acquired in specialized areas or as a result of the use of particular techniques. They include biochemistry, analytical chemistry, theoretical chemistry, computational chemistry, chemical engineering, medicinal chemistry, and biological chemistry. Various interdisciplinary branches of knowledge with roots in chemistry have also arisen, including molecular biology, the study of the chemical and physical basis of biological function and diversity; materials science, the study of the chemical structure and composition of materials; and nanotechnology, the study of matter on the scale of nanometers, at which structures consisting of a small number of atoms can be manipulated.

A newly emerging concern of chemistry is sustainable development, the economical utilization and renewal of resources coupled with hazardous waste reduction and concern for the environment. This sensitive approach to the environment and our planetary inheritance is known colloquially as green chemistry. When it is appropriate to draw your attention to this important development, we display the small icon shown here.

All sciences, medicine, and many fields of commercial activity draw on chemistry. You can be confident that whatever career you choose in a scientific or technical field, it will make use of the concepts discussed in this text. Chemistry is truly central to science.

Mastering Chemistry

You might already have a strong background in chemistry. These introductory pages with colored edges will provide you with a summary of a number of basic concepts and techniques. Your instructor will advise you how to use these sections to prepare yourself for the Topics in the text itself.

If you have little experience of chemistry, these pages are for you, too. They contain a brief but systematic summary of the basic concepts and calculations of chemistry that you should know before studying the Topics in the text. You can return to them as needed. If you need to review the mathematics required for chemistry, especially algebra and logarithms, Appendix 1 has a brief review of the important procedures.

A Matter and Energy

Whenever you touch, pour, or weigh something, you are working with matter. Chemistry is concerned with the properties of matter and particularly the conversion of one form of matter into another kind. But what is matter? Matter is in fact difficult to define precisely without drawing on advanced ideas from elementary particle physics, but a straightforward working definition is that matter is anything that has mass and takes up space. Thus, gold, water, and flesh are forms of matter; electromagnetic radiation (which includes light) and justice are not.

One characteristic of science is that it uses common words from everyday language but gives them a precise meaning. In everyday language, a "substance" is just another name for matter. However, in chemistry, a substance is a single, pure form of matter. Thus, gold and water are distinct substances. Flesh is a mixture of many different substances, and, in the technical sense used in chemistry, it is not a "substance." Air is matter, but, because it is a mixture of several gases, it is not a substance in the technical sense.

Substances, and matter in general, can take different forms, called states of matter. The three most common states of matter are solid, liquid, and gas.

A solid is a form of matter that retains its shape and does not flow.
A liquid is a fluid form of matter that has a well-defined surface; it takes the shape of the part of the container it occupies.
A gas is a fluid form of matter that fills any vessel containing it.
The term vapor denotes the gaseous form of a substance that is normally a solid or liquid. For example, water exists as solid (ice), liquid, and vapor (steam).

FIGURE A. 1 shows the different arrangements and mobilities of atoms and molecules in these three states of matter. In a solid, such as copper metal, the atoms are packed together closely; the solid is rigid because the atoms cannot move past one another. However, the atoms in a solid are not motionless: they oscillate around their average locations, and the oscillation becomes more vigorous as the temperature is raised. The atoms (and molecules) of a liquid are packed together about as closely as they are in a solid, but they have enough energy to move past one another readily. As a result, a liquid, such as water or molten copper, flows in response to a force, such as gravity. In a gas, such as air (which is mostly nitrogen and oxygen) and water vapor, the molecules have achieved almost complete freedom from one another: they fly through empty space at close to the speed of sound, colliding when they meet and immediately flying off in another direction.

A. 1 Symbols and Units

Chemistry is concerned with the properties of matter, its distinguishing characteristics. A physical property of a substance is a characteristic that can be observed or measured without changing the identity of the substance. For example, two physical properties of a sample of water are its mass and its temperature. Physical properties include characteristics such as melting point (the temperature at which a solid turns into a liquid), hardness, color, state of matter (solid, liquid, or gas), and density. When a substance undergoes a physical change, the identity of the substance does not change; only its physical properties are different. For example, when water freezes, the solid ice is still water. A chemical property refers to the ability of a substance to be changed into another substance. For example, a chemical property of the gas hydrogen is that it reacts with (burns in) oxygen to produce water; a chemical property of the metal zinc is that it reacts with acids to produce hydrogen gas. When a substance undergoes a chemical change, it is transformed into a different substance, such as hydrogen changing to water.

A measurable physical property is represented by an italic or sloping letter (thus, m for mass, not m). The result of the measurement, the "value" of a physical property, is reported as a multiple of a unit, such as reporting a mass as 15 kilograms, which is understood to be 15 times the unit " 1 kilogram." Scientists have reached international agreement on the units to use when reporting measurements, so their results can be used with

A. 1 Symbols and Units

A. 2 Accuracy and Precision
A. 3 Force
A. 4 Energy

(a)

(b)

(c)

FIGURE A. 1 Molecular representations of the three states of matter. In each case, the spheres represent particles that may be atoms, molecules, or ions. (a) In a solid, the particles are packed tightly together and held in place, but they continue to oscillate. (b) In a liquid, the particles are in contact, but they have enough energy to move past one another. (c) In a gas, the particles are far apart, move almost completely freely, and are in ceaseless random motion.
confidence and checked by people anywhere in the world. You will find most of the symbols used in this textbook together with their units in Appendix 1.

A Note on Good Practice: All units are denoted by Roman letters, such as m for meter and s for second, which distinguishes them from the physical quantity to which they refer (such as l for length and t for time).

The Système International (SI) is the internationally accepted form and elaboration of the metric system. It defines seven base units in terms of which all measureable physical properties can be expressed. At this stage all you need are

1 meter, 1 m	1 meter, the unit of length
1 kilogram, 1 kg	1 kilogram, the unit of mass
1 second, 1 s	1 second, the unit of time

All the units are defined in Appendix 1B. Each unit may be modified by a prefix that represents a multiple of 10 (and typically 10^{3} or $1 / 10^{3}$). The full set is given in Appendix 1 B ; some common examples are

Prefix	Symbol	Factor	Example
kilo-	k	$10^{3}(1000)$	$1 \mathrm{~km}=10^{3} \mathrm{~m}(1$ kilometer $)$
centi-	c	$10^{-2}(1 / 100,0.01)$	$1 \mathrm{~cm}=10^{-2} \mathrm{~m}(1$ centimeter $)$
milli-	m	$10^{-3}(1 / 1000,0.001)$	$1 \mathrm{~ms}=10^{-3} \mathrm{~s}(1$ millisecond $)$
micro-	μ	$10^{-6}(1 / 1000000,0.000001)$	$1 \mu \mathrm{~g}=10^{-6} \mathrm{~g}(1$ microgram $)$
nano-	n	$10^{-9}(1 / 1000000000,0.000000001)$	$1 \mathrm{~nm}=10^{-9} \mathrm{~m}(1$ nanometer $)$

Units may be combined into derived units to express a property that is more complicated than mass, length, or time. For example, volume, V, the amount of space occupied by a substance, is the product of three lengths; therefore, the derived unit of volume is (meter) ${ }^{3}$, denoted m^{3}. Similarly, density, the mass of a sample divided by its volume, is expressed in terms of the base unit for mass divided by the derived unit for volumenamely, kilogram $/(\text { meter })^{3}$, denoted $\mathrm{kg} / \mathrm{m}^{3}$ or, equivalently, $\mathrm{kg} \cdot \mathrm{m}^{-3}$.

A Note on Good Practice: The SI convention is that a power, such as the 3 in cm^{3}, refers to the base unit and its prefix. That is, cm^{3} should be interpreted as $(\mathrm{cm})^{3}$ or $10^{-6} \mathrm{~m}^{3}$, not as $\mathrm{c}\left(\mathrm{m}^{3}\right)$ or $10^{-2} \mathrm{~m}^{3}$.

It is often necessary to convert measurements from another set of units into SI units. For example, when converting a length measured in inches (in.) into centimeters (cm), it is necessary to use the relation $1 \mathrm{in} .=2.54 \mathrm{~cm}$. Relations between common units can be found in Table 5 of Appendix 1B. They are used to construct a conversion factor of the form

$$
\text { Conversion factor }=\frac{\text { units required }}{\text { units given }}
$$

which is then used as follows:
Information required $=$ information given \times conversion factor
When using a conversion factor, treat the units just like algebraic quantities: they can be multiplied or canceled in the normal way.

EXAMPLE A. 1 Converting units

Suppose you are in a store-perhaps in Canada or Europe-where paint is sold in liters. You know you need 1.7 qt of a particular paint. What is that volume in liters?
ANTICIPATE A glance at Table 5 in Appendix 1B shows that 1 L is slightly more than 1 qt , so you should expect a volume of slightly less than 1.7 L .

PLAN Identify the relation between the two units from Table 5 of Appendix 1B:

$$
1 \mathrm{qt}=0.9463525 \mathrm{~L}
$$

Then set up the conversion factor from the units given (qt) to the units required (L).

SOLVE

Form the conversion factor as (units required)/(units given).

$$
\text { Conversion factor }=\frac{0.9463525 \mathrm{~L}}{1 \mathrm{qt}}
$$

Convert the measurement into the required units.

$$
\text { Volume }(\mathrm{L})=(1.7 \mathrm{qt}) \times \frac{0.9463525 \mathrm{~L}}{1 \mathrm{qt}}=1.6 \mathrm{~L}
$$

EVALUATE As expected, you need slightly less than 1.7 L . The answer has been rounded to two digits, as explained in Appendix 1.

Self-test A.1A Express the height of a person 6.00 ft tall in centimeters.
[Answer: 183 cm]
Self-test A.1B Express the mass in ounces of a 250.-g package of breakfast cereal.
Related Exercises A.13, A.14, A.31, A. 32

It is often necessary to convert a unit that has been raised to a power (including negative powers). In such cases, the conversion factor is raised to the same power. For example, to convert a density, d, of $11700 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ into grams per centimeter cubed $\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$, use the two relations

$$
1 \mathrm{~kg}=10^{3} \mathrm{~g} \text { and } 1 \mathrm{~cm}=10^{-2} \mathrm{~m}
$$

as follows:

$$
\begin{aligned}
d & =\left(11700 \mathrm{~kg} \cdot \mathrm{~m}^{-3}\right) \times \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \times\left(\frac{1 \mathrm{~cm}}{10^{-2} \mathrm{~m}}\right)^{-3} \\
& =\left(11700 \mathrm{~kg} \cdot \mathrm{~m}^{-3}\right) \times \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{10^{-6} \mathrm{~m}^{3}}{1 \mathrm{~cm}^{3}} \\
& =11.7 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}=11.7 \mathrm{~g} \cdot \mathrm{~cm}^{-3}
\end{aligned}
$$

Self-test A.2A Express a density of $6.5 \mathrm{~g} \cdot \mathrm{~mm}^{-3}$ in micrograms per nanometer cubed $\left(\mu \mathrm{g} \cdot \mathrm{nm}^{-3}\right)$.

$$
\left[\text { Answer: } 6.5 \times 10^{-12} \mu \mathrm{~g} \cdot \mathrm{~nm}^{-3}\right]
$$

Self-test A.2B Express an acceleration of $9.81 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ in kilometers per hour squared.

As remarked above, units are treated like algebraic quantities and are multiplied and canceled just like numbers. One consequence is that a quantity like $m=5 \mathrm{~kg}$ could also

Answers to all B self-tests are in the back of this book.

FIGURE A. 2 Mass is an extensive property, but temperature is intensive. These two samples of iron(II) sulfate solution were taken from the same wellmixed supply; they have different masses but the same temperature. (W.H. Freeman photo by Ken Karp.)

Units for physical properties and temperature scales are discussed in Appendix 1B.
be reported as $m / \mathrm{kg}=5$ by dividing both sides by kg. Likewise, the answer in the density conversion could have been reported as $d /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)=11.7$.

Properties can be classified according to their dependence on the size of a sample:
An extensive property is a property that depends on the size ("extent") of the sample.
An intensive property is independent of the size of the sample.
More precisely, if a system is divided into parts and it is found that the property of the complete system has a value that is the sum of the values of the property of all the parts, then that property is extensive. If that is not the case, then the property is intensive. Volume is an extensive property: 2 kg of water occupies twice the volume of 1 kg of water. Temperature is an intensive property, because whatever the size of the sample taken from a uniform bath of water, it has the same temperature (FIG. A.2). The importance of the distinction is that different substances can be identified by their intensive properties. Thus, a sample can be recognized as water by noting its color, density $\left(1.00 \mathrm{~g} \cdot \mathrm{~cm}^{-3}\right)$, melting point $\left(0^{\circ} \mathrm{C}\right)$, boiling point $\left(100^{\circ} \mathrm{C}\right)$, and the fact that it is a liquid.

Some intensive properties are ratios of two extensive properties. For example, density is a ratio of the mass, m, of a sample divided by its volume, V :

$$
\begin{equation*}
\text { Density }=\frac{\text { mass }}{\text { volume }} \text { or } d=\frac{m}{V} \tag{1}
\end{equation*}
$$

The density of a substance is independent of the size of the sample because doubling the volume also doubles the mass, so the ratio of mass to volume remains the same. Density is therefore an intensive property and can be used to identify a substance. Most properties of a substance depend on its state of matter and conditions, such as the temperature and pressure. For example, the density of water at $0^{\circ} \mathrm{C}$ is $1.000 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, but at $100^{\circ} \mathrm{C}$ it is $0.958 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The density of ice at $0^{\circ} \mathrm{C}$ is $0.917 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, but the density of water vapor at $100{ }^{\circ} \mathrm{C}$ and atmospheric pressure is nearly 2000 times less, at $0.597 \mathrm{~g} \cdot \mathrm{~L}^{-1}$.

THINKING POINT

When you heat a gas at constant pressure, it expands. Does the density of a gas increase, decrease, or stay the same as it expands?

Self-test A.3A The density of selenium is $4.79 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. What is the mass of $6.5 \mathrm{~cm}^{3}$ of selenium?
[Answer: 31 g]
Self-test A.3B The density of helium gas at $0{ }^{\circ} \mathrm{C}$ and 1.00 atm is $0.17685 \mathrm{~g} \cdot \mathrm{~L}^{-1}$. What is the volume of a balloon containing 10.0 g of helium under the same conditions?

Chemical properties involve changing the identity of a substance; physical properties do not. Extensive properties depend on the size of the sample; intensive properties do not.

A. 2 Accuracy and Precision

All measured quantities have some uncertainty associated with them; in science it is important to convey the degree to which you are confident about not only the values you report but also the results of calculations using those values. Notice that in Example A. 1 the result of multiplying 1.7 by 0.9463525 is written as 1.6 , not 1.60879925 . The number of digits reported in the result of a calculation must reflect the number of digits known from the data, not the entire set of digits the calculator might provide.

The number of significant figures in a numerical value is the number of digits that can be justified by the data:

When reporting the results of multiplication and division, identify the number of digits in the least precise value and retain that number of digits in the answer.

Thus, the measurement 1.7 qt has two significant figures (2 sf) and 0.9463525 has seven (7 sf), so in Example A. 1 the result is limited to 2 sf .

When reporting the results of addition or subtraction, identify the quantity with the least number of digits following the decimal point and retain that number of digits in the answer.

For instance, two very precise measurements of length might give 55.845 mm and 15.99 mm , and the total length would be reported as

$$
55.845 \mathrm{~mm}+15.99 \mathrm{~mm}=71.83 \mathrm{~mm}
$$

with the precision of the answer governed by the number of digits in the data (shown here in red). The full set of rules for counting the number of significant figures and determining the number of significant figures in the result of a calculation is given in Appendix 1 C , together with the rules for rounding numerical values.

An ambiguity may arise when dealing with a whole number ending in a zero, because the number of significant figures in the number may be less than the number of digits. For example, does 400 mean $4 \times 10^{2}(1 \mathrm{sf}), 4.0 \times 10^{2}(2 \mathrm{sf})$, or $4.00 \times 10^{2}(3 \mathrm{sf})$? To avoid ambiguity, in this book, when all the digits in a number ending in zero are significant, the number is followed by a decimal point. Thus, the number 400. has 3 sf . In the "real world," this helpful convention only rarely is adopted.

To make sure of their data, scientists usually repeat their measurements several times, report the average value, and assess the precision and accuracy of their measurements:

The precision of a measurement is an indication of how close repeated measurements are to one another.
The accuracy of a series of measurements is the closeness of their average value to the true value.

The illustration in FIG. A. 3 distinguishes precision from accuracy. As the illustration suggests, even precise measurements can give inaccurate values.

More often than not, measurements are accompanied by two kinds of error. A systematic error is an error that is present in every one of a series of repeated measurements. Systematic errors in a series of measurements always have the same sign and magnitude. For instance, a laboratory balance might not be calibrated correctly and all recorded masses will be reported as either too high or too low. If you are using that balance to measure the mass of a sample of silver, then even though you might be justified in reporting your measurements to a precision of five significant figures (such as 5.0450 g), the reported mass of the sample will be inaccurate. In principle, systematic errors can be discovered and corrected, but they often go unnoticed and in practice may be hard to identify. A random error is an error that varies in both sign and magnitude and can average to zero over a series of observations. An example is the effect of drafts of air from an open window moving a balance pan either up or down a little, decreasing or increasing the mass measurements randomly. Scientists attempt to minimize random error by making many observations and taking the average of the results.

THINKING POINT

What are some means that scientists can use to identify and eliminate systematic errors?
The precision of a measurement is an indication of how close together repeated measurements are; the accuracy of a measurement is its closeness to the true value.

A. 3 Force

Speed, v, is the rate of change of a body's position and is reported (in SI units) in meters per second $\left(\mathrm{m} \cdot \mathrm{s}^{-1}\right)$. Velocity is closely related to speed but takes into account the direction of motion as well as its rate. Thus, a particle moving in a circle at a constant speed has a constantly changing velocity. Acceleration, a, is the rate of change of velocity: a particle moving in a straight line at a constant speed is not accelerating (its speed and direction of travel is unchanging), but a particle moving at a constant speed in a curved path accelerates because although its speed is constant its velocity is changing (FIG. A.4). In SI units, acceleration is reported in meters per second squared ($\mathrm{m} \cdot \mathrm{s}^{-2}$).

FIGURE A. 3 The holes in these targets represent measurements that are (a) precise and accurate, (b) precise but inaccurate, (c) imprecise but accurate on average, and (d) both imprecise and inaccurate.

FIGURE A. 4 (a) When a force acts along the direction of travel, the speed (the magnitude of the velocity) changes, but the direction of motion does not. (b) The direction of travel can be changed without affecting the speed if the force is applied in an appropriate direction. Both changes in velocity correspond to acceleration.

[^0]: Molar masses (atomic weights) quoted to the number of signific ant figures given here can be regarded as typical of most naturally occurring samples.

 Elements $113,115,117$, and 118 have been identified but not yet (in 2016) formally named.

[^1]: W. H. Freeman and Company

 One New York Plaza
 Suite 4500
 New York, NY 10004-1562
 www.whfreeman.com

